iMQ

Security : B

MQ6812 仿真 MQ6801 說明事項 V1.0

Page: 1/ 9

iMQ Technology Inc.

Title: MQ6812 仿真 MQ6801 說明事項

Version: V1.0

目录

1.	变更历程	3
2.	硬件介紹說明	4
	2.1 MQ6812 仿真板硬件介绍	4
	2.2 操作流程	5
	2.3 调试代码注意事项	6
3.	调试注意事项	7
	3.1 MQ6812 EVBoard 仿真 MQ6801 相容性	7

Page: 2/ 9

iMQ Technology Inc.

Title: MQ6812 仿真 MQ6801 說明事項

Version: V1.0

1. 变更历程

Version	Approved Date	Description	Issuer
V0.9	2016/01/04	新建立	彭兆铨
V1.0	2016/01/05	新增 2.3 部份内容	彭兆铨

Page: 3 / 9

iMQ Technology Inc.

Title:MQ6812 仿真 MQ6801 說明事項

Version: V1.0

2. 硬件介紹說明

2.1 MQ6812 仿真板硬件介绍

- (1) 仿真脚。
- (2) PO0 PO1 外挂外部低速晶振选择。切右为选择 32.768K 切左为外部高速晶振。
- (3) 外部高速晶振连接座,预设为空座。
- (4) 芯片 P10 与 MOLink Jumper。调试时必须保持短路。
- (5) MQ6812 EVBoard 与 MQ Link 连接端口。

Page: 4 / 9

iMQ Technology Inc.

Title:MO6812 仿真 MO6801 說明事項

Version: V1.0

2.2 操作流程

(1) MQ6812 EVBoard

(2) 连接 MQLink

Page: 5 / 9

iMQ Technology Inc.

Title:MQ6812 仿真 MQ6801 說明事項

Version: V1.0

(3) 连接计算机

(4) 调试->开始调试

ÎMQ	文件 <mark>(E)</mark>	编辑 <mark>(E)</mark>	视图(⊻)	项目 <mark>(P)</mark>	编译 <mark>(B</mark>)	调	त्त <mark>(D</mark>)	配置	(<u>S</u>)	窗口 <mark>(W</mark>)	帮助 <mark>(且)</mark>
睝	🛩 🖬 🖨	🏽 🎽 🖻	X	B B K	C 🛛 🔁		开始词	周试		F5	
(##)						EXIT	结束	周试	5		

2.3 调试代码注意事项

- (1) P10 RESET 功能不能停用,避免 IDE 在执行芯片复位时出现失去控制情形。
- (2) OCDCK OCDIO 占用 P40 P41 · 不要使用这两管脚。
- (3) 若要使用 MOLink 飞线到板上调试 MO6812 · 板上芯片的 P10,P40,P41 脚不要连接额外负载。

(4) 若 MQ-Link 固件使用 IMQ OCDE OS v1.6.6 以后的版本(含 1.6.6) · 必须移除仿真版上 C8 的 10uF 电容。

Page : 6 / 9

iMQ Technology Inc.

Title: MO6812 仿真 MO6801 說明事項

Version: V1.0

3. 调试注意事项

3.1 MQ6812 EVBoard 仿真 MQ6801 相容性

(1)仿真时WUC功能无法由软件开启

调试时,WUC不会发出INTWUC中断,请使改用迴圈来达到延时功能。

(2)MO6812 10位定时器TCO 不支援MO6812 TC0 16位模式

(3)10位定时器TCO部份设置与TC0不同

TCO 源时钟少4组参数设置,无脉宽调制PW/M模式,TCM0=01时非为定时器/事件计数器模式。详细比较请参照下表,绿底文字为不相容设置:

定时器计数器00模式寄存器(MQ6812->TCQ MQ6801->TC0)

T00MOD (0x002A)	7	6	5	4	3	2	1	0
位符号	TFF0	DBE0		TCK0		-	TCM0	
读/写	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
复位后	1	1	0	0	0	0	0	0

参数	定时器									
DBE0		Ν	/IQ6815 TCQ		MQ6801 TC0					
	数 值	普通 1/2,3	≌闲 1/2 模式		普通 1/2,S	低速 1/2				
		SYSCR1 <dv9ck>=0</dv9ck>	SYSCR1 <dv9ck>=1</dv9ck>	低速 1/2 模式 睡眠 1 模式	SYSCR1 <dv9ck>=0</dv9ck>	SYSCR1 <dv9ck>=1</dv9ck>	_ 模式 睡眠1模 式			
	100:	fcgck/2 ⁴	fcgck/2 ⁴	-	fcgck/2 ⁴	fcgck/2 ⁴	-			
TOVO	101:	fcgck/2 ²	fcgck/2 ²	-	fcgck/2 ²	fcgck/2 ²	-			
ТСКО	110:	fcgck/2	fcgck/2	-	fcgck/2	fcgck/2	-			
	111:	fcgck	fcgck	fs/2 ²	fcgck	fcgck	fs/2 ²			
	000	Reserved	Reserved	Reserved	$fcgck/2^{11}$	fs/2 ³	fs/2 ³			
	001	Reserved	Reserved	Reserved	fcgck/2 ¹⁰	fs/2 ²	fs/2 ²			
	010	Reserved	Reserved		fcgck/2 ⁸	fcgck/2 ⁸				
	011	Reserved	Reserved		fcgck/2 ⁶	fcgck/2 ⁶				
	00:	10 位定时器/	事件计数器模式	t	8位定时器/事件计数器模式					
тсмо	01:	10 bit capture	e mode		8 位定时器/事件计数器模式					
I CIVIO	10:	10 位可编程图	永宽调制 PPG 轴	俞出模式	8位脉宽调制PWM输出模式					
	11:	10 位可编程图	永宽调制 PPG 轴	谕出模式	8 位可编程脉宽调制 PPG 输出模式					

Page: 7 / 9

Title:MO6812 仿真 MO6801 說明事項

Version: V1.0

(4)MQ6812 多一组非可屏蔽 WDT2

编程时需注意,若已关闭 WDT,还是需要清除看门狗来避免 WDT2 发出复位信号。 WDT2 与 WDT 使用同一个方式清除计时器,WDT2 溢位时间大于 WDT,清除 WDT 时同时也清除 WDT2。

(5)MQ6812 预设最高时脉 16MHz MQ6801 预设最高时脉 8MHz

使用 MQ6812 开发 MQ6801 程序时,需注意在同样的系统分频设置(CGCR)下,MQ6812 系统时钟会是 MQ6801 2 倍,故在调试完烧录至 MQ6801 前,要再修改 CGCR 设置,让前后维持同样系统时钟频率。

(6)MQ6812 可编程脉宽调制无占空比 0%和 100%输出

MO6812 可编程脉宽调制输出禁止设置占空比 0%以及 100%, 若要仿真此两种设置请使用软件程序来达到近似的功能(请参考范例代码)。

(7)MO6812 与 MO6801 从 TRIM CODE 补偿内部 2V 参考电压方式不同

MQ6812 多了周边功能运算补偿数值,补偿 TRIM CODE 位于 0x7E05 0x7E06; MQ6801 需编程运算程序,补偿 TRIMCODE 位于 0x7E63 0x7E64。

2V Vref 补偿方式:

MQ6812:

1.设置 MULCTR = 0x02,开启自动补偿 2V 功能

2.设置 ADC · Vref 使用内部 2V · ADC 运行。

3.转换完成后读取 ADC 数值,此 ADC 数值为自动补偿后数值。

MQ6801:

- 1.读取 0x7E63(高字节) 0x7E64(低字节) 地址之数值,其中 0x7E63 只取[3:0]低 4 位数值,将此 12 位数值乘以 2048 再除以 2000,暂称为 Vref2048。
- 2.设置 ADC · Vref 使用内部 2V · ADC 运行。
- 3.转换完成后读取 ADC 数值 · 将此数值乘以 Vref2048 再除以 2048 · 最后得到补偿 后 ADC 数值 ·

Page : 8 / 9

iMQ Technology Inc.

Title:MQ6812 仿真 MQ6801 說明事項

Version: V1.0

注 1: MO6801 ADC Vref 2V 补偿公式为

对应数值	0x7e63	0x7e63	0x7e63	0x7e63	0x7e64							
	地址之											
	数值位											
	3	2	1	0	7	6	5	4	3	2	1	0
2VTRIMCODE	位 11	位 10	位 9	位 8	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0

ADC 补偿后数值=ADC 转换数直 * (2VTRIMCODE / 2000)

注 2:先乘以 2048 后再除去 2048 是为了运算上效率优化。

Page: 9/ 9